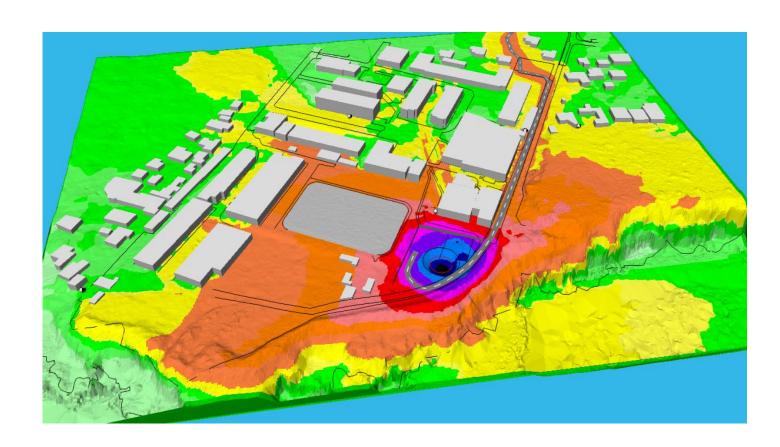


Ce projet est cofinancé par l'Union Européenne et la Région Réunion. L'Europe s'engage à la réunion avec le Fonds Social Européen.

RAPPORT D'ETUDE : ETUDE D'IMPACT ACOUSTIQUE TERRESTRE



BARDOT OCEAN SAS Chantier du SWAC CHU SUD

ETUDE D'IMPACT ACOUSTIQUE

Réalisée par Philippe PINTEAU

Document n°CP00322920D du 10/03/2020

SUIVI DES REVISIONS

Révision A 10/10/2019 – création

Déclaration des hypothèses

Révision B 17/02/2020 – mise à jour suite aux mails ACOA

- Modifications de présentation
- 11/10/2019 : modification des horaires du chantier de forage
- 08/11/2019 : suppression de la voie d'accès n°1
- 15/11/2019 : mise en place d'un silencieux sur l'extracteur d'air
- 18/11/2019 : définition des sources de bruit du chantier forage

Révision C 20/02/2020 – suite à la validation des hypothèses par ACOA

- Modifications de présentation
- Rajout d'un point d'étude chez le riverain le plus proche à l'Est (ZER5)
- Calculs et analyses

Révision D 10/03/2020 – suite à la réunion de travail du 27/02/2020

- RSMA hors du périmètre de mise en conformité vis-à-vis du bruit
- Mise à jour
 - o Prise en compte de la clôture du chantier pleine
 - Suppression du BRH pour la phase micro tunnel
 - Emission de la pompe de surface électrique LwA 95 dBA
- Traitement acoustique des extracteurs d'air par des écrans
- Préconisations de traitement acoustique

Sommaire

1.	MIS	SSIO	N	4
	1.1.	Des	scriptif de la commande	4
	1.2.	Mé	thodologie de l'étude	4
	1.3.	Etu	des antérieures ou documentations fournies	4
	1.4.	Loc	alisation de l'installation	5
	1.5.	Réf	érentiels	6
	1.5	.1.	Référentiels règlementaires	6
	1.5	.1.	Référentiels de mesurage	6
	1.5	.2.	Référentiels de calcul	6
	1.5	.3.	Précision des calculs, incertitude sur les résultats	6
2.	ET	UDE	DE L'IMPACT ACOUSTIQUE DE L'INSTALLATION	7
	2.1.	Me	sures acoustiques environnementales de l'état initial avant travaux	7
	2.2.	Car	actérisation des points d'étude	9
	2.3.	Scé	enarios d'étude	11
	2.4.	Car	actérisation des sources acoustiques	11
	2.5.		eurs acoustiques limites	
	2.6.	Mo	délisation numérique	20
	2.6	.1.	Conditions d'environnement	20
	2.6	.2.	Plan descriptif acoustique	20
	2.6	.3.	Cartes de bruit colorées	22
	2.6		Modèle géométrique 3D	
	2.7.	Cal	culs et analyses	23
	2.7	.1.	Calcul des niveaux de pression acoustique aux points d'étude au sol	23
	2.7	.1.	Calcul des niveaux de pression acoustique sur les façades des bâtiments étudiés	24
	2.7	.2.	Interprétation des calculs et des cartes de bruit	30
	2.7	.3.	Analyse des dépassements	31
	2.8.	Cor	nclusion du diagnostic	33
3.	PR	ECO	NISATIONS DE TRAITEMENTS	34
	3.1.	Pré	conisations	34
	3.1	.1.	Extracteur d'air	34
	3.1		Pelle hydraulique	
	3.2.	Vér	ification de l'efficacité des traitements par le calcul	37
	3.2	.1.	Calcul des niveaux de pression acoustique aux points d'étude au sol	37
	3.2	.2.	Calcul des niveaux de pression acoustique sur les façades des bâtiments étudiés	38

1. MISSION

1.1. Descriptif de la commande

Dans le cadre de la réalisation du chantier du SWAC CHU SUD sur le site du RSMA (97410 Saint Pierre, La Réunion), la société BARDOT OCEAN SAS, souhaite évaluer son impact acoustique sur l'environnement et prévoir les traitements d'insonorisation à mettre éventuellement en œuvre pour respecter la réglementation.

Le chantier fonctionnera:

- Pour les phases de génie civil, du lundi au vendredi, de 7h00 à 18h30.
- Pour la phase de forage du tunnel, du lundi au samedi, de 7h00 à 22h00.

1.2. Méthodologie de l'étude

L'étude suivra la méthodologie suivante :

- Réalisation d'une campagne de mesures acoustiques environnementales réglementaires
- Création d'un modèle numérique acoustique
- Analyse de la situation en chantier, suivant différentes phases et scénarios
- Recherche de solutions techniques pour réaliser le traitement correctif
- Validation des effets de réduction à l'aide du modèle numérique

1.3. Etudes antérieures ou documentations fournies

La société BARDOT OCEAN SAS nous a fourni, par le cabinet ACOA, son assistant à la maîtrise d'ouvrage :

- Plan du site actuel : « 25.09.19 BARDOT_Plan de masse MaJ »
- Coupe du puits : « 24.09.19 BARDOT_RUN_SWAC-COUPE PUIT CIRCULAIRE-180915 »
- Position du puits : « 17.09.19 BARDOT_G601-A-PRO-IMP Vue en plan des implatantions des sondages »
- Liste des engins de génie civil et leurs puissances acoustiques : « 24.09.19 BARDOT_SWAC Planning engins »
- Les circuits possibles de poids lourds : « 01.10.19 BARDOT_Options acces » et les hypothèses de trafic
- Le MNT Litto 3D Réunion
- Le principe de fonctionnement du forage : « 08.10.19 BARDOT_HERRENKNECHT AVN 2000 »
- Le plan du chantier de forage « 20.12.19 Plan de chantier forage_annote PHPS revuGD »
- La position de la clôture de chantier « 27.02.20 cloture_chantier_RSMA »

1.4. Localisation de l'installation

1.5. Référentiels

1.5.1. Référentiels règlementaires

Le référentiel règlementaire directement applicable est l'arrêté du 26 décembre 2006 relatif aux prescriptions générales applicables aux exploitations de carrières soumises à déclaration sous la rubrique n° 2510 de la nomenclature des installations

1.5.1. Référentiels de mesurage

NF S 31-010 décembre 1996 + annexes A1 et A2, mesures effectuées suivant la norme sans déroger à aucune de ses dispositions

1.5.2. Référentiels de calcul

Le logiciel de modélisation acoustique utilisé est CADNAA 2019, avec :

- Pour les calculs industriels, la norme ISO 9613-2:1996 Acoustique Atténuation du son lors de sa propagation à l'air libre - Partie 2: Méthode générale de calcul.
- Pour les calculs routiers, la norme NF S 31-133 (NMPB 2008).
- Le logiciel fait l'objet d'une assurance qualité suivant ISO 17534.

1.5.3. Précision des calculs, incertitude sur les résultats

La précision des calculs varie fortement suivant la distance entre la source et le récepteur. Le logiciel utilisé permet une évaluation de la précision en chaque point étudié, en calculant l'écart-type σ sur le niveau sonore calculé.

PHPS choisit de définir l'incertitude élargie supérieure, I⁺ avec un coefficient de confiance de 90%, soit :

$$I^{+} = 1.645 * \sigma$$

Un niveau L calculé est donc susceptible d'atteindre la valeur L + I⁺

Cette incertitude n'est pas systématiquement ajoutée au résultat. Les tableaux de résultats indiqueront donc les valeurs nominales et les incertitudes.

2. ETUDE DE L'IMPACT ACOUSTIQUE DE L'INSTALLATION

2.1. Mesures acoustiques environnementales de l'état initial avant travaux

Les mesures acoustiques environnementales de l'état initial avant travaux ont été réalisées sur plusieurs jours, du 12/09/2019 au 16/09/2019 par PHPS.

Point	Туре	Désignation				
322 _ ZER1	Emergence régl.	Magasin RSMA (bâtiment RSMA le plus proche)				
322 _ ZER2	Emerg. + Lim prop	Première habitation à l'Est				
322 _ ZER3	Emerg. + Lim prop	Première habitation à l'Ouest				
322 _ ZER4	Emergence régl.	Bâtiment administratif RSMA (grande hauteur)				

Ces mesures font l'objet d'un rapport détaillé fourni séparément sous la référence CP00322910.

Les principaux résultats sont les suivants :

	•				
	Point	Indicateur	Niveau résiduel	Valeur limite	Observations
			(dbA)	(dbA)	
Chantier	322 _ZER2	LAeq	46,0	70,0	
génie civil	322 _ZER3	LAeq	52,5	70,0	
Chantier	322 _ZER2	LAeq	46,0	70,0	
tunnel	322 _ZER3	LAeq	51,5	70,0	

		NIVE	REGLEMENTEE						
	Point		Point		Indicateur retenu	Niveau résiduel	Emergence admissible	Niveau ambiant admissible	Observations
			(dbA)	(dbA)	(dbA)	(dbA)			
	322	_ZER1	LAeq	45,0	6,0	51,0			
Chantier	322	_ZER2	LAeq	46,0	5,0	51,0			
génie civil	322	_ZER3	LAeq	52,5	5,0	57,5			
	322	_ZER4	LAeq	46,0	5,0	51,0			
	322	_ZER1	LAeq	40,5	6,0	46,5			
Chantier	322	_ZER2	LAeq	46,0	5,0	51,0			
tunnel	322	_ZER3	LAeq	51,5	5,0	56,5			
	322	_ZER4	LAeq	40,0	6,0	46,0			

L'objectif de ces mesures acoustiques d'état initial avant travaux est de caractériser l'ambiance acoustique pré existante sur le site et de déterminer les valeurs sonores admissibles par la réglementation.

Deux cas ont été étudiés :

- le chantier de génie civil, ouvert sur le créneau 7h00-19h00 du lundi au vendredi
- le chantier de tunnel, ouvert sur le créneau 7h00-22h00 du lundi au samedi

Les limites de propriétés considérées sont celles entre le site du RSMA et les riverains les plus proches, à l'Est et à l'Ouest. La limite de propriété avec le domaine maritime n'a pas été considérée.

Les niveaux ont été déterminés sur la base de mesures de longue durée comprenant un weekend. Les valeurs retenues sont les plus faibles rencontrées sur la période d'ouverture de chaque chantier.

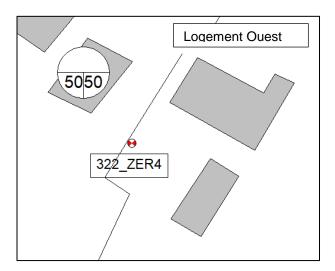
L'influence d'un vent d'Est (alizé) est très marquée sur ce site de bord de mer.

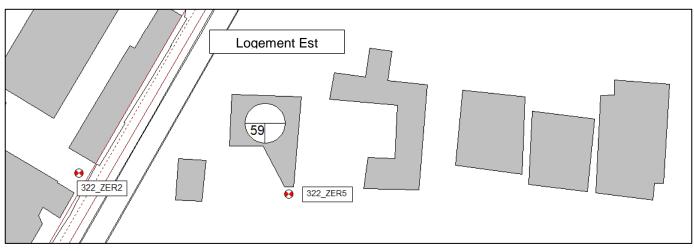
2.2. Caractérisation des points d'étude

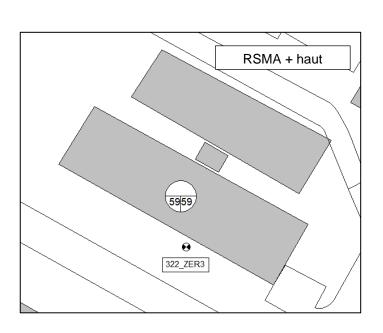
 Les points d'étude sont ceux retenus pour les mesures acoustiques, représentés par le symbole.

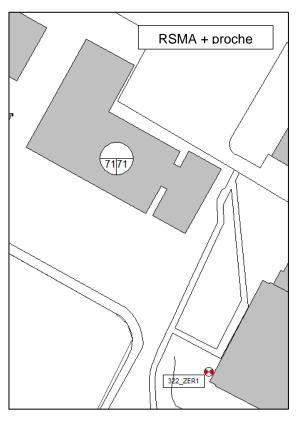
On rajoute, pour les besoins de l'étude, un point ZER5 chez le riverain le plus proche à l'Est. Le point ZER2 est masqué par la clôture de chantier et ne présentera pas d'intérêt dans la suite de l'étude.

ID	Réf	Hauteur		C	oordonnées	
				X	Υ	Z
		(m)		(m)	(m)	(m)
322_ZER1	Point magasin	1.5	r	343566	7638409	27
322_ZER2	Point Est	4.0	r	343655	7638485	32
322_ZER3	Point commandement	1.5	r	343518	7638529	30
322_ZER4	Point Ouest	4.0	r	343331	7638374	24
322_ZER5	Point riverains Est	4.0	r	343697	7638481	36


- Nous avons également choisi d'étudier les niveaux de sonores maximaux rencontrés sur les façades de certains bâtiments :
 - o Le bâtiment du RSMA le plus proche (hors magasin)
 - Le bâtiment du RSMA le plus élevé (bâtiment administratif)
 - o Le logement le plus proche situé à l'Ouest
 - o Le logement le plus proche situé à l'Est


Ces niveaux de façade sont repérés sur les documents graphiques par un symbole où figurent les niveaux maximum sur les façades :




Réf.	ID	onnées	
		X	Υ
		(m)	(m)
BAT01	Logement Est le plus proche	343693	7638495
BAT02	RSMA le plus proche	343543	7638461
BAT03	Logement Ouest	343325	7638383
BAT04	RSMA commandement	343517	7638540

2.3. Scénarios d'étude

6 scénarios d'étude ont été réalisés :

- Génie Civil Terrassement 0 à -3 m, dans le remblai, création d'un talus
- Génie Civil Forage des micropieux
- Génie Civil Terrassement -3 m à 21 m, dans le rocher
- Génie Civil Jet Grouting, injections dans le sol
- Forage Forage du tunnel

2.4. Caractérisation des sources acoustiques

- PHASES GENIE CIVIL: Les caractéristiques acoustiques des sources de bruit ont été précisées par la société GTOI.
 - Les émissions du groupe électrogène ont été surestimées par rapport au modèle déclaré, en cas de besoin d'un appareil plus puissant.
 - On a retenu l'hypothèse d'un groupe électrogène fonctionnant en permanence, du fait de l'incertitude, à ce jour, de disposer d'un compteur électrique de chantier.
 - Les émissions sonores du pont roulant ont été estimées par PHPS, sur la base de l'expérience.
 - Le ventilateur d'extraction, d'une puissance acoustique de 116 dBA a été équipé d'un silencieux qui ramène sa puissance acoustique à 109 dBA (note de calcul GTOI).
 - Des émissions sonores ont été calculées par PHPS, pour les circuits de camions suivant la NMPB 2008, avec les paramètres suivants : vitesse sur site 20 km/h, accélération.
 - flux pendant la phase « génie civil » : 50 passages par jour sur 12h avec un pic à 5 veh / h
 - flux pendant la phase « forage » : 16 passages par jour sur 15h avec un pic à 2
 veh / h

- PHASE FORAGE DU PUITS: Les caractéristiques acoustiques des sources de bruit et leurs positions ont été précisées par la société BARDOT OCEAN.
 - L'ensemble de la centrale de traitement des eaux et du dessableur ayant une puissance acoustique totale de 94 dBA, elle a été répartie en 91 dBA pour le dessableur et 91 dBA pour la centrale de traitement des eaux.
 - L'extracteur d'air est équivalent à celui du chantier de génie civil, il est muni du même silencieux.
 - La pelle est du même type que pour le chantier de génie civil, sans BRH, LwA = 103 dBA.
 - o Faute de données, certaines émissions sonores ont été estimées par PHPS :
 - Pompe de surface : LwA = 95 dBA. Ceci vaut pour une pompe électrique. Si le modèle choisi est plus bruyant (pompe diesel par exemple), les calculs devront être reconduits.
 - Centrale à coulis : LwA = 85 dBA, sur la base de l'équivalence avec une centrale à béton.
 - Centrale à air comprimé : LwA = 99 dBA, sur la base de l'équivalence avec un compresseur insonorisé.
 - Tunnelier: LwA = 109 dBA, sur la base de l'équivalence avec une centrale hydraulique de 315 kW.

Les caractéristiques acoustiques des sources de bruit prises en compte sont les suivantes :

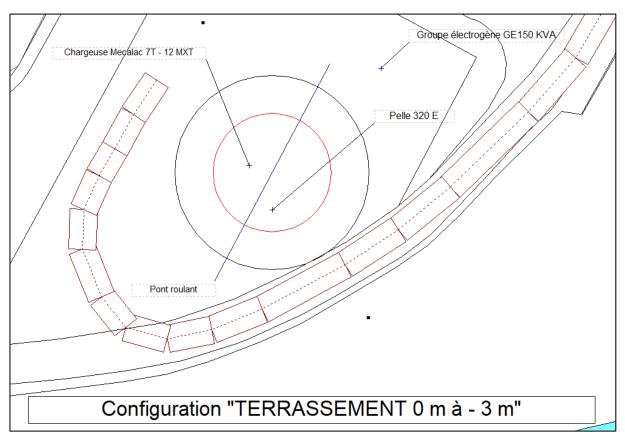
SOURCES PONCTUELLES

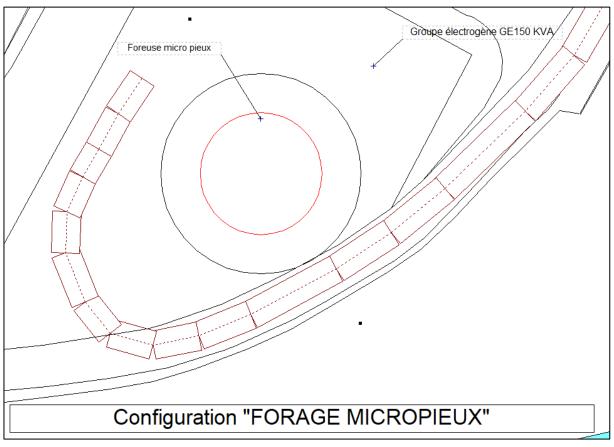
Réf.	ID	LwA	Hauteu	ır	Coc	ordonnées	
					Χ	Υ	Ζ
		(dBA)	(m)		(m)	(m)	(m)
Pelle 320 E	Pelle_00	103.0	2.0	r	343560	7638362	24
Pelle 320 E + BRH MB 1200	Pelle_01	117.2	2.0	r	343560	7638362	21
Chargeuse Mecalac 7T - 12 MXT	Chargeuse_01	101.0	2.0	r	343557	7638367	21
Foreuse micro pieux	Foreuse_01	102.0	2.0	r	343560	7638373	21
Foreuse Jet Grouting	Foreuse_02	102.0	2.0	r	343565	7638370	3
Centrale d'injection	Centrale_01	100.0	2.0	r	343564	7638384	25
Compresseur XAVS 287	Compresseur_01	99.0	2.0	r	343570	7638382	25
Extracteur d'air	Ventilateur_01	109.0	2.0	r	343576	7638368	25
Groupe électrogène GE150 KVA	GroupeE_01	105.0	2.0	r	343574	7638379	25
Dessableur BAUER BE 425-60	Dessableur_01	91.0	2.0	r	343547	7638351	24
Groupe électrogène GE600 KVA (1)	GroupeE_02	86.0	2.0	r	343561	7638385	25
Groupe électrogène GE600 KVA (2)	GroupeE_03	86.0	2.0	r	343563	7638385	25
Grue télescopique	Grue_01	72.0	2.0	r	343573	7638373	25
Pelle hydraulique	Pelle_02	103.0	2.0	r	343558	7638353	24
Centrale air comprimé	Centrale_02	99.0	2.0	r	343550	7638376	24
Compresseur	Compresseur_02	99.0	2.0	r	343550	7638378	24
Centrale à coulis	Centrale_03	85.0	2.0	r	343558	7638386	24
Station de traitement des eaux	Station_01	91.0	2.0	r	343550	7638352	24
Extracteur d'air	Ventilateur_02	109.0	2.0	r	343556	7638379	24
Pompe de surface	Pompe_01	95.0	2.0	r	343558	7638380	24
Tunnelier	Tunnelier_01	109.0	2.0	r	343560	7638363	-4

SOURCES LINEIQUES

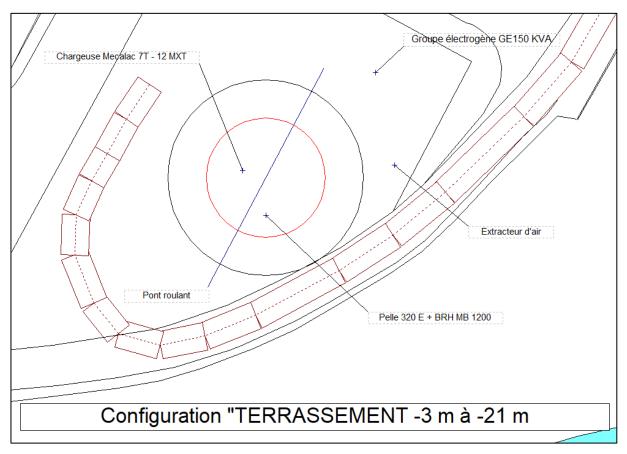
Réf.	ID	Résultats LwA		
		Jour	Nuit	
		(dBA)	(dBA)	
Pont roulant	Pont 01	90.0		

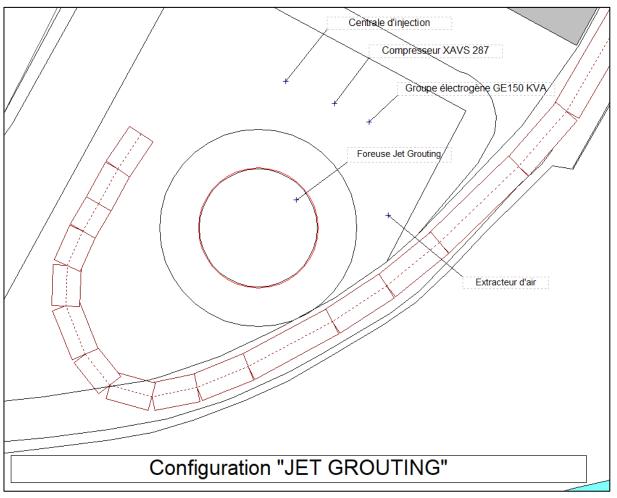
CIRCUITS DE POIDS LOURDS

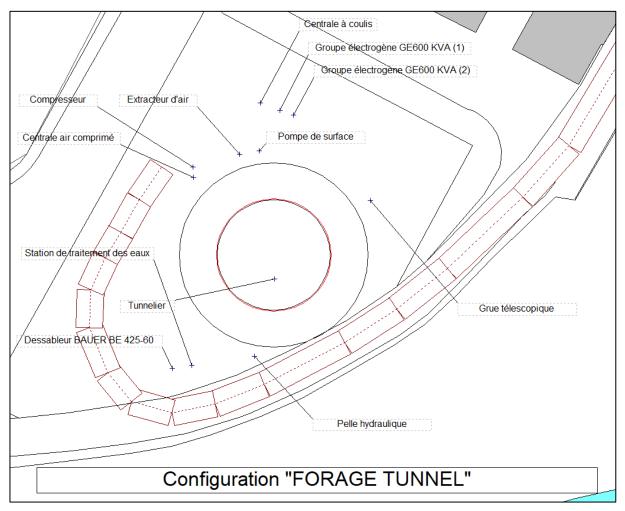

Réf.	ID	LAw'		LAw' Comptage exact des données						Vitesse max.	Flux de Circulation
		Jour		Q		p (%)		Camion			
		(dBA)		Jour		Jour		(km/h)			
Circulation PL phase génie civil	Circuit_GC	67.9		5.0		100.0		20	accélération		
Circulation PL phase forage	Circuit_FO	64.0		2.0		100.0		20	accélération		

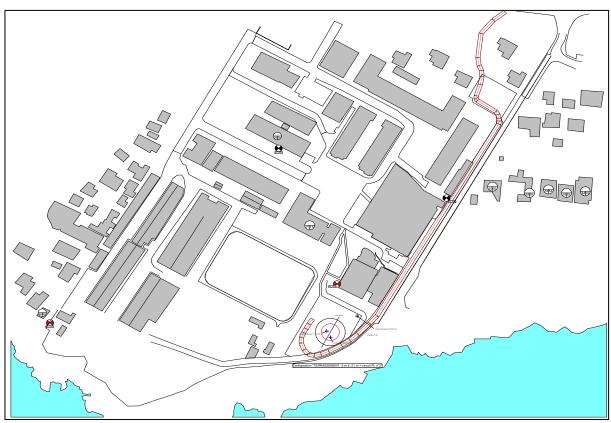

Commentaires

- Pour le chantier de génie civil, les positions des sources de bruit sur le site n'ont pas été définies par le Client à ce stade du projet. Du fait de l'effet de masque des bâtiments, ces positions ont une grande influence sur la propagation du bruit. Elles ont donc, dans un premier temps, été estimées par PHPS, aux points à priori les plus défavorables.
- Les centres acoustiques de toutes les sources n'ayant pas été précisés, ils ont été placés à 2 m au-dessus du sol fini.
- Les spectres acoustiques n'ont pas pu être fournis. On ne procèdera donc qu'à un calcul en niveau sonore global, ce qui exclut l'analyse de tonalités marquées.




REPERAGE DES SOURCES DE BRUIT SUIVANT LES PHASES DU CHANTIER





Circuit des poids lourds (en rouge)

2.5. Valeurs acoustiques limites

2.5.1.1. Définitions

- Le <u>bruit ambiant</u> comprend les émissions sonores de l'installation et celles de son environnement. Pour limiter les émissions sonores de l'installation, la valeur de ce bruit en limite de propriété est réglementée.
- Le <u>bruit résiduel</u> comprend uniquement les émissions sonores de l'environnement. Il caractérise l'ambiance sonore du site, en l'absence d'activité de l'installation.
- La différence arithmétique entre le bruit ambiant et le bruit résiduel est appelée <u>émergence</u>.
 Elle correspond à l'augmentation de niveau sonore à laquelle on assiste lorsque l'on met en route l'installation. Elle caractérise la nuisance que peuvent subir des tiers, et à ce titre, elle est réglementée dans les zones habitées proches (ou habitables).
- Les modélisations que nous effectuerons ne peuvent intégrer les niveaux de bruit résiduels.
 En effet, ces derniers sont très variables suivant les endroits où ils sont mesurés. Il est donc nécessaire, pour les calculs, de se ramener au bruit dont l'installation est seule responsable, le <u>bruit particulier de l'installation</u>.

Ce bruit particulier s'obtient par soustraction énergétique entre le bruit ambiant et le bruit résiduel

$$L_{particulier} = 10 \times log_{10} (10^{(L_{ambiant}^{10})} - 10^{(L_{résiduel}^{10})})$$

2.5.1.2. Calcul des valeurs limites

<u>Critères en limite de propriété</u> : la réglementation précise qu'en limite de propriété, on ne doit pas mesurer plus de 70 dBA de jour (ou 60 dBA de nuit), l'installation étant en fonctionnement.

<u>Critères d'émergence</u> : La réglementation précise que l'on ne doit pas mesurer une émergence de plus 5 dBA le jour. Cette valeur est portée à 6 dBA lorsque le bruit résiduel est très bas.

On déduit le bruit particulier par le calcul et on obtient alors le tableau suivant :

		CALCUL DES CRITERES D'EMERGENCE								
	Point	Niveau résiduel mesuré	Emergence autorisée	Niveau ambiant autorisé	Bruit particulier maximal autorisé					
		(dbA)	(dbA)	(dbA)	(dbA)					
	322 _ZER1	45,0	6,0	51,0	49,7					
Objection of six	322 _ZER2	46,0	5,0	51,0	49,3					
Chantier génie civil	322 _ZER3	52,5	5,0	57,5	55,8					
0.11.1	322 _ZER4	46,0	5,0	51,0	49,3					
	322 _ZER5	46,0	5,0	51,0	49,3					
	322 _ZER1	40,5	6,0	46,5	45,2					
	322 _ZER2	46,0	5,0	51,0	49,3					
Chantier forage	322 _ZER3	51,5	5,0	56,5	54,8					
	322 _ZER4	40,0	6,0	46,0	44,7					
	322 _ZER5	46,0	5,0	51,0	49,3					

Le point ZER5 n'ayant pas été mesuré, il est assimilé au point ZER2 proche. Pour les points étudiés, on obtient donc, en dernière colonne, les niveaux particuliers maximaux admissibles, de jour comme de nuit.

2.5.1.3. Généralisation à l'ensemble de la zone

Le principal intérêt d'une modélisation numérique est de pouvoir visualiser, à l'aide du calcul, les niveaux sonores sur l'ensemble de la zone d'étude.

Nous faisons donc le choix de points représentatifs pour l'ensemble des émergences en zones habitées.

Période	Période Zone		Niveau particulier maximal (dBA)
	Limite de propriété		70
Chantier génie civil	Zone habitée	ZER1, ZER2, ZER4 et ZER5	49
Chaptier forces	Limite de propriété		70
Chantier forage	Zone habitée	ZER1 et ZER4	45

On constate que le chantier de forage fait l'objet de contraintes plus sévères que le chantier de génie civil (45 dBA contre 49 dBA). Ceci qui provient de son ouverture plus longue, dans des périodes plus calmes.

2.6. Modélisation numérique

2.6.1. Conditions d'environnement

2.6.1.1. Topographie

Le site du chantier étant localisé dans une zone en décaissé, la topographie a une influence marquante, elle a été modélisée par récupération du modèle topographique numérique.

L'absorption du sol a été prise en compte dans les calculs avec G=0 (sols réfléchissants).

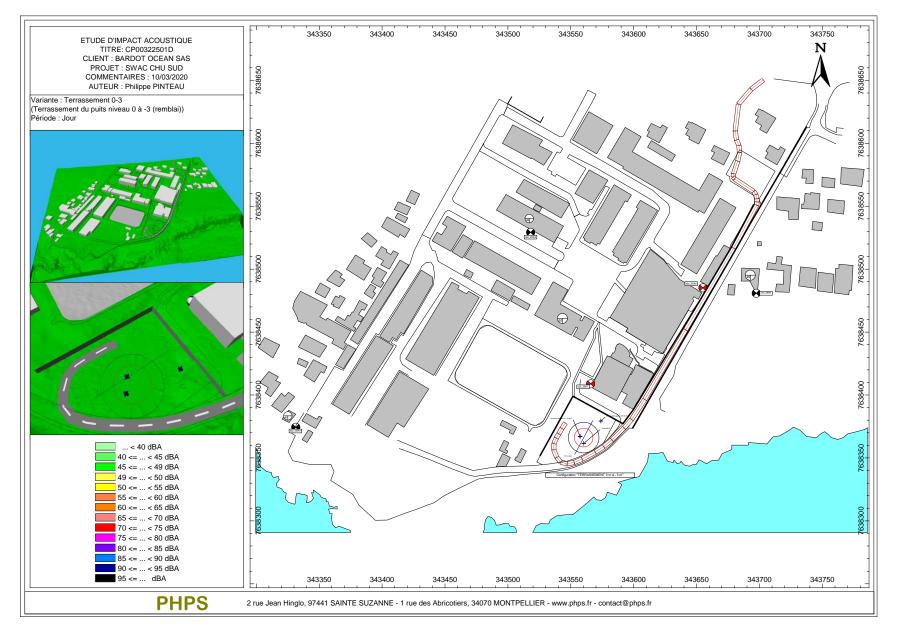
Les réflexions ont été calculées jusqu'à l'ordre 3.

Le mur séparatif en limite de propriété Est a été pris en compte dans la modélisation ainsi que la clôture de chantier. Cette dernière sera pleine, parfaitement étanche ($R_w > 25 \text{ dBA}$) et d'une hauteur de 3 m sans espace par rapport au sol. Une construction en bardages métalliques ou en plaques de bois peut convenir.

2.6.1.2. Météorologie

Les paramètres de calcul ont été fixés à T=30°C et HR=70%.

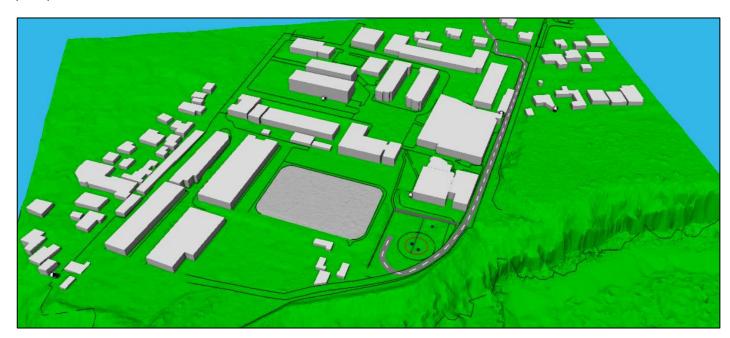
Le vent d'Est (alizé) est très présent sur le site, en particulier en second partie de journée. Son influence sera importante sur les émissions sonores : les logements situés à l'Est bénéficieront d'une atténuation du bruit et ceux situés à l'Ouest d'un renforcement. Néanmoins, cet effet n'a pas été intégré dans les calculs à ce stade, afin d'évaluer une situation moyenne, en l'absence de vent.


2.6.2. Plan descriptif acoustique

Le plan descriptif acoustique reprend :

- Les positions des sources de bruit
- Les bâtiments proches
- Des indications complémentaires (voies, limites,...)

Il figure en page suivante.


2.6.3. Cartes de bruit colorées

Pour simplifier l'interprétation, on a représenté :

- En rouge les limites à partir desquelles on n'est plus conforme en limite de propriété (de jour ou de nuit). On est donc conforme si les zones rouges restent confinées dans les limites de propriété de l'installation.
- En vert les limites à partir desquelles on est conforme en émergence (de jour ou de nuit). On est donc conforme si les habitations restent dans des zones vertes. On rappelle que ce raisonnement peut être appliqué à des zones où le bruit résiduel est comparable à celui choisi comme référence plus haut.
- Les niveaux sonores sont évalués à 4 m du sol.

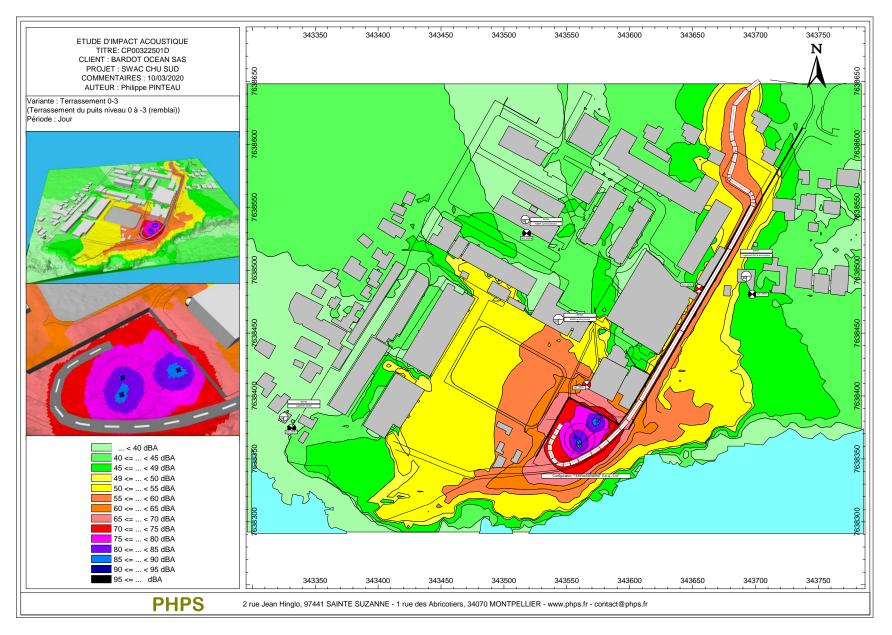
2.6.4. Modèle géométrique 3D

Le modèle géométrique 3D est réalisé en prenant en compte l'installation étudiée et les bâtiments les plus proches.

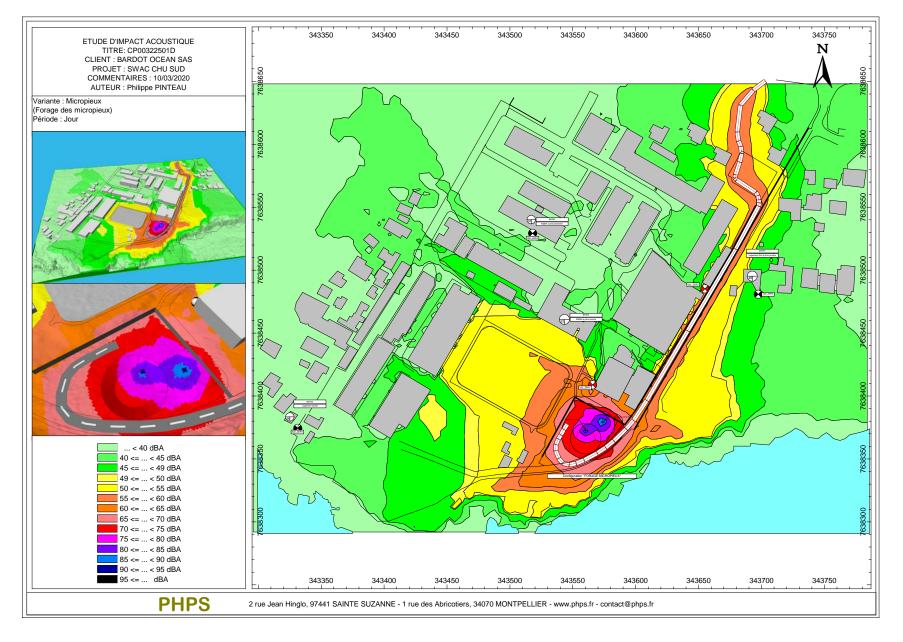
2.7. Calculs et analyses

2.7.1. Calcul des niveaux de pression acoustique aux points d'étude au sol

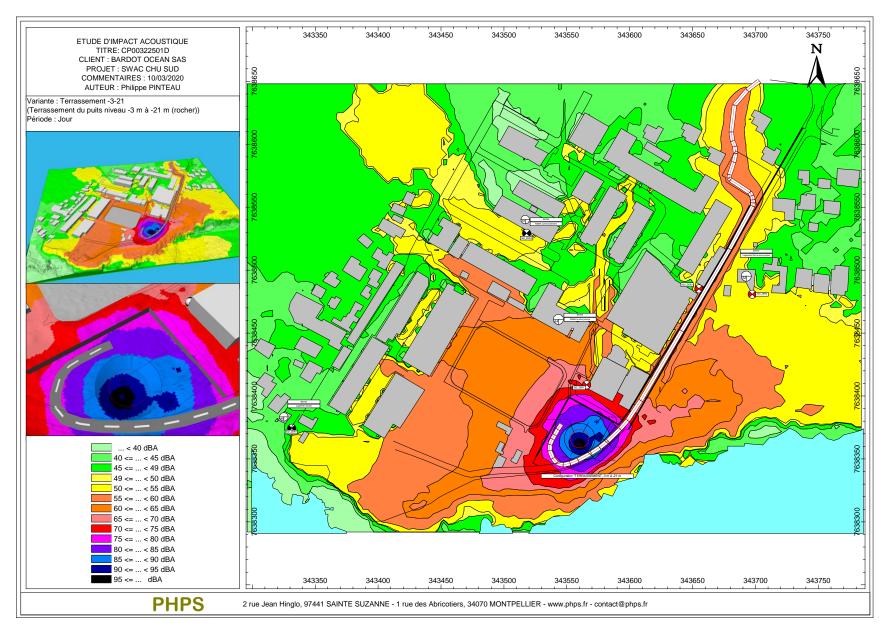
	Estimation des niveaux de pression acoustique aux points d'étude (dBA) au sol							
	Points de mesure	322_ZER1	322_ZER3	322_ZER4	322_ZER5			
	Désignation	Magasin	Point Est	Commandement	Riverain Ouest	Riverain Est		
	Lp calculé	56,8	52, 8	40,9	38,9	47,0		
Terrassement	Valeur maximale	49,7	49,3	55,8	49,3	49,3		
0 m - 3 m	Dépassement	7,1	3,5	- 14,9	- 10,4	- 2,3		
	Incertitude	1,9	1,9	3,3	3,7	3,7		
	Lp calculé	51,6	52, 8	37,8	36,3	46,3		
Micropieux	Valeur maximale	49,7	49,3	55,8	49,3	49,3		
Wilcropieux	Dépassement	1,9	3,5	- 18,0	- 13,0	- 3,0		
	Incertitude	1,9	3,5	4,6	5,5	4,2		
	Lp calculé	65,3	53,4	48,9	46,6	51,2		
Terrassement	Valeur maximale	49,7	49,3	55,8	49,3	49,3		
- 3 m - 21 m	Dépassement	15,6	4,1	- 6,9	- 2,7	1,9		
	Incertitude	3,2	1,7	4,6	4,5	3,7		
	Lp calculé	55,3	52,9	43,5	43,2	47,8		
Jet Grouting	Valeur maximale	49,7	49,3	55,8	49,3	49,3		
Jet Grouting	Dépassement	5,6	3,6	- 12,3	- 6,1	- 1,5		
	Incertitude	1,4	1,8	4,3	5,3	3,5		
	Lp calculé	63,4	48,9	44,0	40,4	46,0		
Forage tunnel	Valeur maximale	45,2	49,3	54,8	44,7	49,3		
li orage turmer	Dépassement	18,2	- 0,4	- 10,8	- 4,3	- 3,3		
	Incertitude	1,9	1,8	4,0	4,2	3,0		

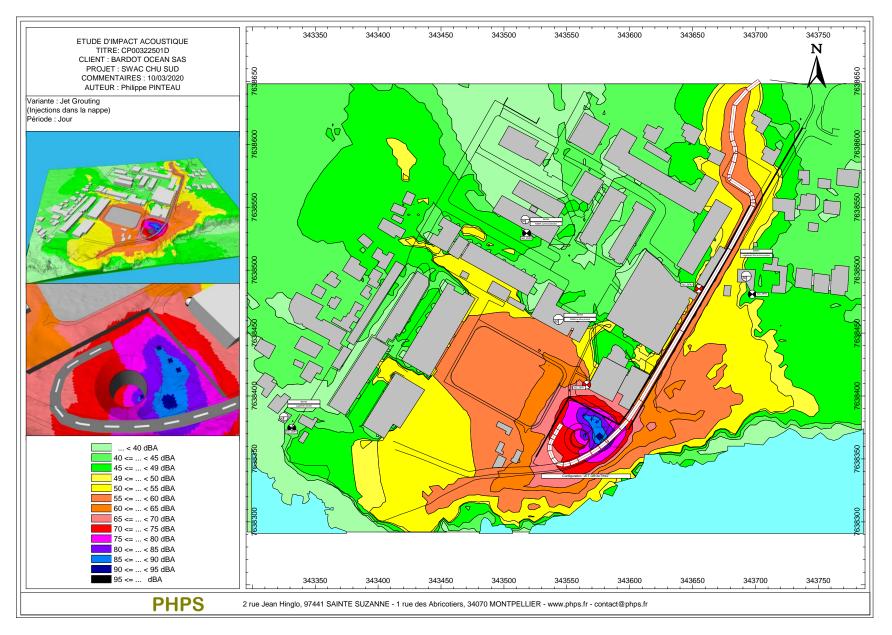


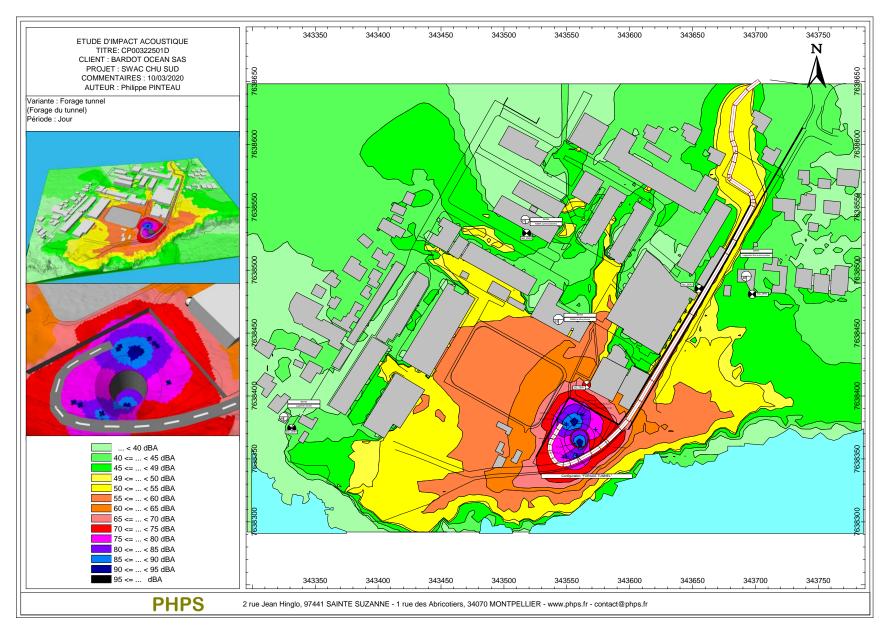
2.7.1. Calcul des niveaux de pression acoustique sur les façades des bâtiments étudiés


	Estimation des niveaux de façade des bâtiments étudiés (dBA)				
	Points de mesure	BAT01	BAT02	BAT03	BAT04
	Désignation	Logement Est le plus proche	RSMA le plus proche	Logement Ouest	RSMA commandement
	Lp calculé	48,6	54,4	38,0	47,8
Terrassement	Valeur maximale	49,0	49,0	49,0	49,0
0 m - 3 m	Dépassement	-0,4	5,4	-11,0	-1,2
	Incertitude	3,3	3,0	4,0	4,0
	Lp calculé	48,2	52,3	35,7	43,1
Micropieux	Valeur maximale	49,0	49,0	49,0	49,0
Wilcropleux	Dépassement	-0,8	3,3	-13,3	-5,9
	Incertitude	4,2	4,4	5,6	5,2
	Lp calculé	52,1	63,8	45,6	56,3
Terrassement -	Valeur maximale	49,0	49,0	49,0	49,0
- 3 m - 21 m	Dépassement	3,1	14,8	-3,4	7,3
	Incertitude	4,2	4,4	5,3	4,9
	Lp calculé	49,5	59,5	42,1	49,6
Jet Grouting	Valeur maximale	49,0	49,0	49,0	49,0
Jet Grouting	Dépassement	0,5	10,5	-6,9	0,6
	Incertitude	3,5	3,7	5,0	5,3
Forage tunnel	Lp calculé	45,5	58,5	39,7	51,0
	Valeur maximale	45,0	45,0	45,0	45,0
	Dépassement	0,5	13,5	-5,3	6,0
	Incertitude	3,1	3,4	4,2	4,4

Les cartes de bruit calculées pour les différentes phases de chantier figurent en pages suivantes.







2.7.2. Interprétation des calculs et des cartes de bruit

Pour les bâtiments du RSMA

- Le magasin (ZER1) et le bâtiment d'enseignement le plus proche (BAT02) sont touchés par le bruit quelles que soient les phases de chantier considéré.
- Le bâtiment de commandement n'est pas touché par le bruit au niveau du sol (ZER3) mais ses étages le sont, en particulier pendant les phases de terrassement 3 m 21 m et forage.
- Le point ZER2 situé à l'Est est systématiquement touché par le bruit. Ces dépassements proviennent de la proximité du point avec la voie de circulation des poids lourds. Le RSMA doit donc s'attendre à une gêne sonore sur ses façades, qui heureusement sont peu ouvertes sur l'intérieur des bâtiments. Pour l'analyse des effets du bruit dans cette zone, on lui préfèrera le point ZER5 et le niveau de façade BAT01, situés directement chez le riverain le plus proche à l'Est.

Pour les logements de riverains

- Le premier logement situé à l'Ouest (ZER4 / BAT03) n'est pas touché par le bruit.
- Le premier logement situé à l'Est (ZER5 / BAT01) est touché par le bruit pendant les phases terrassement 3 m 21 m, Jet Grouting et forage.

2.7.3. Analyse des dépassements

La modélisation informatique permet d'analyser, en chaque point et pour chaque scénario, les influences de chaque source de bruit et de classer ces influences par ordre décroissant. Cette démarche permet d'identifier les sources les plus pénalisantes pour envisager ensuite leur traitement.

On se limite, dans un premier temps, à l'analyse des effets du chantier sur les logements de riverains. Les mesures qui pourront être envisagées bénéficieront également au RSMA.

2.7.3.1. Premier logement situé à l'Est (ZER5 / BAT01) - phase terrassement - 3 m - 21 m

Pelle 320 E + BRH MB 1200	Pelle_01	48.4
Circulation PL phase génie civil	Circuit_GC	45.7
Extracteur d'air	Ventilateur_01	42.1
Groupe électrogène GE150 KVA	GroupeE_01	36.1
Chargeuse Mecalac 7T - 12 MXT	Chargeuse_01	31.8
Pont roulant	Pont_01	28.8

La première source incriminée est la pelle hydraulique puis la circulation des poids lourds et l'extracteur d'air.

2.7.3.2. Premier logement situé à l'Est (ZER5 / BAT01) - phase Jet Grouting

Circulation PL phase génie civil	Circuit_GC	45.7
Extracteur d'air	Ventilateur_01	42.1
Groupe électrogène GE150 KVA	GroupeE_01	36.1
Centrale d'injection	Centrale_01	30.0
Compresseur XAVS 287	Compresseur_01	27.1
Foreuse Jet Grouting	Foreuse_02	20.6

La première source incriminée est la circulation des poids lourds puis l'extracteur d'air.

2.7.3.3. Premier logement situé à l'Est (ZER5 / BAT01) – phase forage

Circulation PL phase forage	Circuit_FO	41.6
Pelle hydraulique	Pelle_02	40.2
Extracteur d'air	Ventilateur_02	40.0
Centrale air comprimé	Centrale_02	30.5
Compresseur	Compresseur_02	30.3
Tunnelier	Tunnelier_01	27.1
Station de traitement des eaux	Station_01	26.6
Dessableur BAUER BE 425-60	Dessableur_01	26.4
Pompe de surface	Pompe_01	25.8
Groupe électrogène GE600 KVA (1)	GroupeE_02	16.0
Groupe électrogène GE600 KVA (2)	GroupeE_03	16.0
Centrale à coulis	Centrale_03	14.9
Grue télescopique	Grue_01	3.8

La première source incriminée est la circulation des poids lourds puis la pelle hydraulique et l'extracteur d'air.

2.8. Conclusion du diagnostic

Des dépassements des niveaux autorisés sont observables sur le site du RSMA et chez le riverain le plus proche à l'Est.

Le riverain le plus proche situé à l'Ouest n'est pas touché par le bruit.

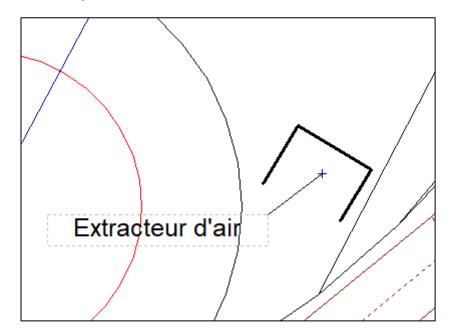
Les sources incriminées dans les dépassements de niveaux sonores chez le riverain à l'Est sont :

- La pelle hydraulique.
- L'extracteur d'air.
- La circulation des poids lourds.

3. PRECONISATIONS DE TRAITEMENTS

Remarque préliminaire

La société BARDOT et son assistant maître d'ouvrage ACOA Conseil nous ont indiqué que la mise en conformité des niveaux sonores ne devait pas être recherchée sur le site du RSMA, le chantier faisant l'objet d'un accord avec ce dernier.


On recherchera donc la mise en conformité acoustique chez le riverain situé à l'Est, faisant l'objet des seuls dépassements.

3.1. Préconisations

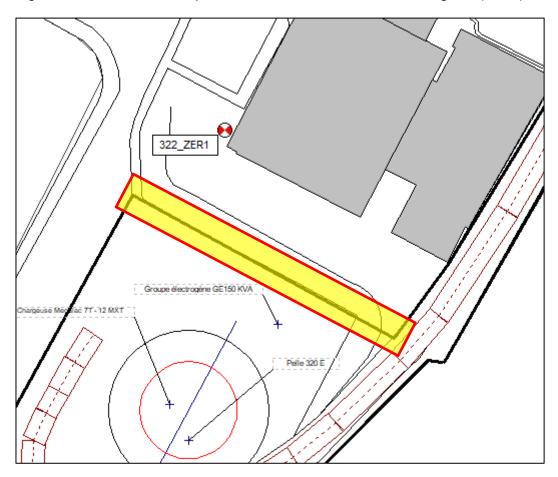
3.1.1. Extracteur d'air

L'extracteur d'air sera muni d'un écran anti-bruit de 4 m de haut de type enceinte avec une ouverture orientée vers la mer. Une construction à 3 faces, en bardage métallique ou plaques de bois de longueur 4 m x largeur 4 m, ouverte sur sa partie supérieure, est acceptable.

Son affaiblissement acoustique sera R_w =25 dBA au minimum.

L'entreprise qui exécutera les travaux devra soumettre sa proposition à l'accord du maître d'ouvrage avant son exécution.

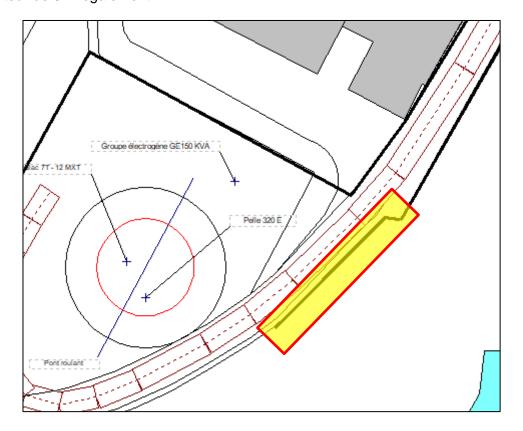
Une autre possibilité est d'opter pour un silencieux plus performant sur l'extracteur, présentant un effet équivalent.


3.1.2. Pelle hydraulique

La pelle hydraulique est une source de bruit très impactante au point ZER4, en particulier lorsqu'elle est munie d'un brise roche hydraulique.

Cette source étant mobile sur le chantier, son traitement ne peut être envisagé qu'en augmentant les hauteurs des obstacles entre elle et le logement du particulier à l'Est.

Pour atteindre les niveaux sonores attendus, PHPS propose :


• D'augmenter à 5 m de haut la partie de la clôture faisant face au magasin (45 ml) :

Zone de clôture à passer à 5 m de haut : L=45 ml x h=5 m

• De compléter la clôture de chantier par une clôture en partie Sud-Est sur 26 m et d'une hauteur de 5 m également :

Clôture complémentaire en partie sur Est : L=26 ml x h=5m

Les mêmes dispositions s'appliquent à ces deux clôtures :

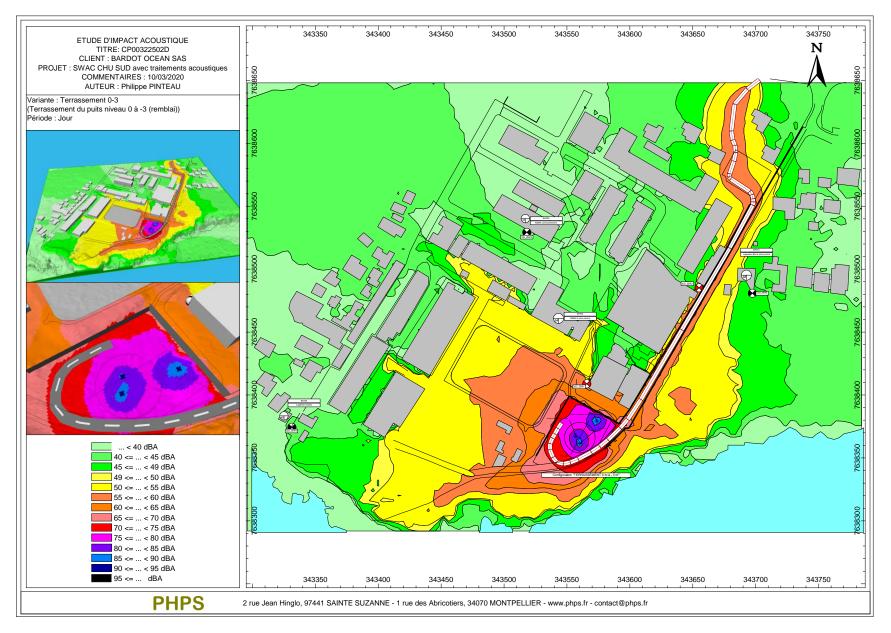
- Pleines et parfaitement étanches (R_w > 25 dBA)
- Sans espace par rapport au sol.
- Une construction en bardages métalliques ou plaques de bois peut convenir.

3.2. Vérification de l'efficacité des traitements par le calcul

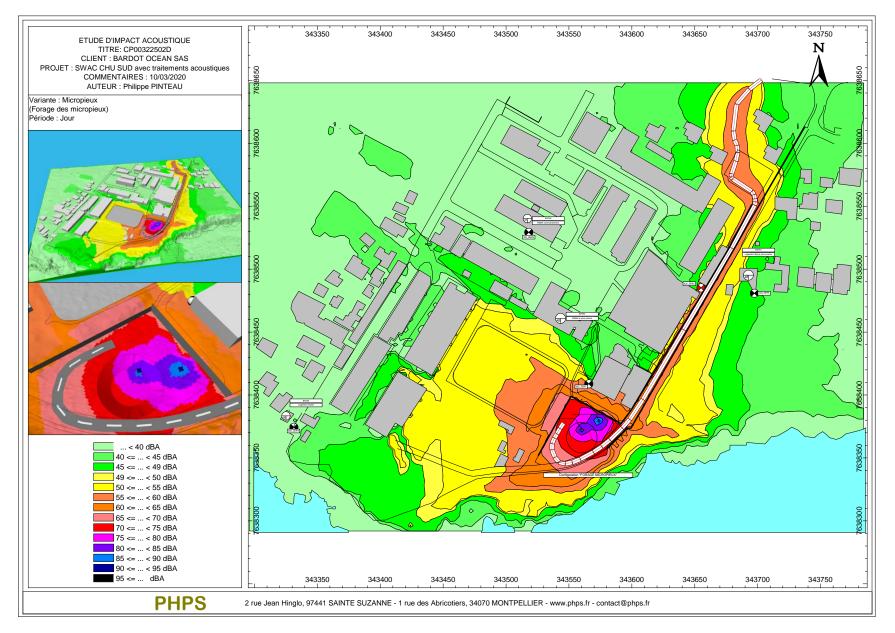
3.2.1. Calcul des niveaux de pression acoustique aux points d'étude au sol

	Estimation des niveaux de pression acoustique aux points d'étude (dBA) au sol après					
	traitements acoustiques					
	Points de mesure	322_ZER1	ZER1 322_ZER2 322_ZER3		322_ZER4	322_ZER5
	Désignation	Magasin	Point Est	Commandement	Riverain Ouest	Riverain Est
	Lp calculé	54,2	52, 8	40,1	40,4	46,8
Terrassement	Valeur maximale	49,7	49,3	55,8	49,3	49,3
0 m - 3 m	Dépassement	4,5	3,5	- 15,7	- 8,9	- 2,5
	Incertitude	2,0	1,9	3,3	4,4	4,0
	Lp calculé	49,1	52,7	35,8	38,6	46,1
Micropieux	Valeur maximale	49,7	49,3	55,8	49,3	49,3
Wilcropieux	Dépassement	- 0,6	3,4	- 20,0	- 10,7	- 3,2
	Incertitude	2,2	1,9	4,2	6,1	4,6
	Lp calculé	60,4	53,2	48,7	47,1	48,2
Terrassement	Valeur maximale	49,7	49,3	55,8	49,3	49,3
- 3 m - 21 m	Dépassement	10,7	3,9	- 7,1	- 2,2	- 1,1
	Incertitude	3,0	1,8	4,8	4,2	3,5
	Lp calculé	52,1	52,8	42,5	44,6	46,4
lot Grouting	Valeur maximale	49,7	49,3	55,8	49,3	49,3
Jet Grouting	Dépassement	2,4	3,5	- 13,3	- 4,7	- 2,9
	Incertitude	2,4	1,8	4,9	4,8	4,3
Forego tunnol	Lp calculé	54,4	48,8	41,5	42,0	44,7
	Valeur maximale	45,2	49,3	54,8	44,7	49,3
Forage tunnel	Dépassement	9,2	- 0,5	- 13,3	- 2,7	- 4,6
	Incertitude	1,5	1,8	3,0	3,4	3,4

Les niveaux sont conformes chez les riverains et s'améliorent au RSMA.


3.2.2. Calcul des niveaux de pression acoustique sur les façades des bâtiments étudiés

	Estimation des niveaux de façade des bâtiments étudiés (dBA) après traitements					
	acoustiques					
	Points de mesure	BAT01	BAT02	BAT03	BAT04	
	Désignation	Logement Est le plus proche	RSMA le plus proche	Logement Ouest	RSMA commandement	
	Lp calculé	48,5	54,2	39,7	47,2	
Terrassement	Valeur maximale	49,0	49,0	49,0	49,0	
0 m - 3 m	Dépassement	-0,5	5,2	-9,3	-1,8	
	Incertitude	3,6	3,2	4,6	4,5	
	Lp calculé	48,2	49,2	38,2	40,7	
Micropieux	Valeur maximale	49,0	49,0	49,0	49,0	
Wilcropleux	Dépassement	-0,8	0,2	-10,8	-8,3	
	Incertitude	4,5	4,5	6,1	4,6	
	Lp calculé	49,5	61,3	46,0	55,3	
Terrassement -	Valeur maximale	49,0	49,0	49,0	49,0	
- 3 m - 21 m	Dépassement	0,5	12,3	-3,0	6,3	
	Incertitude	3,7	4,4	4,9	5,5	
	Lp calculé	48,4	52,2	43,2	46,0	
Jet Grouting	Valeur maximale	49,0	49,0	49,0	49,0	
	Dépassement	-0,6	3,2	-5,8	-3,0	
	Incertitude	4,0	3,3	4,4	5,5	
Forage tunnel	Lp calculé	45,2	55,9	41,4	46,4	
	Valeur maximale	45,0	45,0	45,0	45,0	
	Dépassement	0,2	10,9	-3,6	1,4	
	Incertitude	3,1	2,9	5,0	4,7	


Les niveaux chez les riverains sont soit conformes, soit très proches de la conformité (de 0,2 à 0,5 dBA de dépassement). Les niveaux s'améliorent au RSMA.

Ce résultat est considéré comme acceptable.

